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Inhomogeneous Quarter-Wave Transformers

of Two Sections*

LEO YOUNGTY, SENIOR MEMBER, IRE

Summary—An inhomogeneous transformer is defined as one in
which the guide wavelength is a function of position; for a homogene-
ous transformer, the guide wavelength is independent of position.

A previous paper! has dealt with inhomogeneous transformers
of one section; the existence of an optimum design (which is never
homogeneous) was demonstrated. The mathematical tools for in-
homogeneous transformers of two or more sections have been pre-
sented in another paper.? Our purpose here is to apply these results
to the solution of the two-section inhomogeneous transformer.

The maximally flat ideal transformer was solved exactly and the
design equations verified by subsequent numerical analysis. An
approximate procedure to improve the performance over a finite
bandwidth (similar to the Tchebycheff response of homogeneous
transformers) is also explained.

INTRODUCTION

HE NEED for inhomogeneous transformers may
Tarise when it is desired to connect two waveguides

of different dimensions. Consider, for instance,
rectangular waveguide of dimensions ¢ Xb (Fig. 1). The
guide wavelength depends only on the width a. If two
waveguides differing only in their b dimensions are to be
connected, then a homogeneous quarter-wave trans-
former is possible (but not necessary and probably not
optimum!). It has been shown on a first-order theory
that where a homogeneous transformer is possible, the
shortest maximally flat transformer is a quarter-wave
transformer.? Since a single-section homogeneous quar-
ter-wave transformer can always be improved by an in-
homogeneous design,! it seems likely that an inhomo-
geneous quarter-wave transformer of more than one sec-
tion will likewise improve the best electrical perform-
ance when a maximum transformer length is specified.
This result, however, remains to be confirmed.

If two waveguides differing in the ¢ dimension (Fig.
1), as well as possibly the b dimension, are to be con-
nected, then a homogeneous transformer is not possible
at all, and again it may be suspected that an inhomo-
geneous quarter-wave transformer will yield the best per-
formance when the transformer is to be kept below a
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certain length. Such a discussion then provides the moti-
vation for the following investigation.

MATHEMATICAL SUMMARY

In this section, some definitions and formulas will be
summarized which have been proved elsewhere,!? and
which are needed to derive the design equations of a two-
section quarter-wave transformer. Such a transformer
is shown in Fig. 2. The two sections are generally of
unequal electrical lengths 6; and 8,, which become equal
only at center frequency, when

0:02=‘—' 1
| 5 (1)

The four characteristic impedances from input to out-
put are denoted by Zo, Zi, Z», and Z;. The log ratios of
the three steps are defined? by

1 Z;

a; = —In

2 Zia

i=1,23). (2)

The spin matrix exponentials,? which will be needed to
express transformation matrices, are

Eq(x) = exp (o1%)
Eg(x)
Eg(?(‘)

i

exp (o2x)
exp (o3x) (3)
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Fig. 1—Waveguide cross section.
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Fig. 2-—Two section transformer parameters.
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where g1, 03, and g3 are the three Pauli spin matrices

(1 o)

g1 =
1 0

()
71 o

(L) ®
g3 = 0 _1 .

The transfer matrix,?* of each impedance step is then
the first spin matrix exponential of the log ratio of that
impedance step,

El(a), (5)

and the transfer matrix of each section of line is given by
the third spin matrix exponential of that line length
times v/ —1,

E5(56). (6)

The over-all transfer matrix of the two-section trans-
former is given in terms of the two line lengths 8y, 6,,
and the three log ratios a1, az and as, by the product

T = Ei(c1) Es(§61) Ex(as) Es(782) E1(as). M

At center frequency

™
Es(58:) = Es(] 7) = o3, (8)
and in that case (7) reduces to
T(0,=1r/2> = E1(Oé1 — g + 013) (9)
by means of (8) of Young.?
Writing
Ty T
T - ( 11 12>7 (10)
T21 T2‘.Z
the diagonal part? of T is then denoted by
Di(T) (Tu 0 ) (1)
1 =
O T22
and the antidiagonal part? of T by
Ag(T) ( ° T”) (12)
87\, o )
The condition for a match is
Ag(T) = 0. (13)

Therefore, for a match at center frequency, (9) yvields

(14)

ay — ay + as = 0.

¢ L. Young, “Analysis of a transmission cavity wavemeter,” IRE
TrANS. oN Mi1cROWAVE THEORY AND TECHNIQUES, vol. MTT-8
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Denote the free space (or medium) wavelength by X\
and define the differential operator!

d
D=x—-

N (13)

The condition for perfect match, as well as zero slope
of the frequency response curve at center frequency, is
given by (13) combined with

Ag(DT) = 0.
From (7) and (8), with (5), (7) and (8) of Young,?
DT = ¢.TDay — ¢:TDas + 1T Day
+ josE\(—aposEi(as)osEi(as) Db,

(16)

+ josEi{—a)osEi(—as)osEi{as) Doy (17)
. DT = oiTD{(a; — az + «3)
+ termsin I, o3, and o. (18)
To satisfy (16), first note that
Ag(l) = Ag(as) = 0. (19)

This leaves the coefficients of ¢; and o2 in (18) to be
separately equated to zero. [It will be seen from (2) of
Young? that o, terms are generated in (17).] The coeffi-
cient of ¢y is immediately evident from (18). For it to be
zero, it is required that

D(Oé]_ - 3 + 0[3) = 0 (20)

[This equation does not follow from (14), since the o’s
are not independent of frequency, as they would be in a
homogeneous transformer. |

It can be shown!® that

Da; = %(fﬂ - tz'_l‘“’), (21)
where
Ag
= — 22
N (22)

Ay being the guide wavelength. In general, each section
will have its own wvalue #;, which is a function of fre-

quency.
It can also be shown! that
DB, = — 1,%;. (23)
From (20) and (21),
12— 12 = 1(4? — t.9). (24)
The output to input impedance ratio is
Zy
= —, (25)
Zy

5 L. Young, “Design of Microwave Stepped Transformers with
Applications to Filters,” D.Eng. dissertation, The Johns Hopkins
Univ., Baltimore, Md.; April, 1959,
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and the a's are therefore related by

a1+0(2+0(3=%h’l R (26)

Eqgs. (14) and (24) are necessary but not sufficient
conditions for a maximally flat transformer. The other
conditions derive from the coefficient of ¢ in (18) being
zero. This yields

Ag[Erv(—ar — as+ a3) DOy + Ei(—an + as + az) D]

=0, (27)

after using (2) and (8) of Young.? Therefore, from (23)
and (1), at center frequency

t2sinh (—oy — as + as)

+ f22 sinh (—oq + (¢ 2] + aa) = 0. (28)
Using (14), this reduces to

sinh 2a; £\?

e (1 o

sinh 2q; i

Eqgs. (14), (24) and (29), together with the iden-
tity (26), are the complete solution of the maximally
flat two-section inhomogeneous transformer problem.
When the input and output waveguides are specified,
to, 3, and R are known. [t is easy to see that there always
exists a solution for fy, £, oa, as, and as. Moreover, this
solution is not unique, since there is only one constrain-
ing equation (24) on the two parameters f; and .

Each solution will exhibit “maximally flat” behavior
in the sense that the reflection coefficient against fre-
quency curve will have a double zero at center fre-
quency. However, some solutions will be flatter than
others, and if the one-section transformer may be taken
for a guide,! we should sometimes expect one solution to
be the “flattest maximally flat.” We might expect sig-
nificant differences only as cutoff is approached, or for
large values of R, or both.

Instead of finding the optimum solution, as was done
for the single-section transformer, this extra one degree
of freedom may serve another useful purpose. In
rectangular waveguide, the smaller the H-plane steps,
the more nearly ideal is the transformer. The parameters
t1 and f, may therefore be selected so as to make none
of the individual H-plane steps too large. This will re-
duce first order corrections which might be necessary
for nonideal junctions.!

Eqgs. (14) and (29) may be expressed in terms of the
characteristic impedances Zo, Z1, Zo, and Zs, instead of
the log ratios au, as and «. They become

()
— ) =R,
Z,

(30)
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and

Z1 2 l12 __l_ Z22R1/2
= (31)

VAR AT Sl
respectively, where R is given by (25).

NuMERICAL RESULTS FOR MAXIMALLY
FLAT TRANSFORMERS

To test the theory, several two-section transformers
designed by these equations were analyzed. In each
case, a maximally flat response, in the sense of a double
zero of the reflection coefficient at center frequency, was
obtained.

Let a, b again denote guide width and height, respec-
tively (Fig. 1). The suffix numbering is as shown in

Fig. 2.

Example 1
Design wavelength,
Ao = 9.1 inches,
ay = 8 inches, bo = 2 inches

5 inches, b3 = 3 inches.

as

Selecting either a; or @, determines the design uniquely.
A plot of VSWR against wavelength of five cases is
shown in Fig. 3. For example, the dimensions of the
transformer with the flattest curve in Fig. 3, are

a; = 8.000 inches, by = 3.462 inches
as = 5.341 inches, b2 = 3.210 inches.

There is little change in performance when a; is reduced
from 8 inches to about 6 or 6.5 inches (Fig. 3). The
choice of ¢; will then depend more on practical consid-
erations concerning the departure of the H-plane steps
from ideal transformers. The extent to which H-plane
steps in rectangular waveguide depart from ideal trans-
formers has already been discussed elsewhere.! Unfor-
tunately, each of the transformers in Fig. 3 involves at
least one junction which is too far from ideal {or a physi-
cal model to be expected to follow the ideal transformer
theory. An alternative approach would be to use two
intermediate transformers of two sections each, and
spaced a quarter wave apart, which would reduce the
steps to where each transformer is essentially ideal.

Example 2
Design wavelength,
Mo = 1.390 inches
ay = 0.900 inch,
ay; = 0.850 inch,
a; = 0.771 inch,
a; = 0,750 inch,

by = 0.400 inch,
by = 0.429 inch,
b, = 0.417 inch,
b; = 0.400 inch,
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which conform to the design equations. The VSWR
against wavelength response is shown in Fig. 4.

NUMERICAL REsuLTS ON BROAD-BANDING

Usually one is concerned with obtaining the best pos-
sible performance over a prescribed frequency band,
rather than maximally flat response. For the homogene-
ous transformer, this problem has been solved analyti-
cally,®7 and the author has made up numerical tables®
for this case.

Since no exact solution has been found for the in-
homogeneous transformer, it seemed worthwhile to try
to modify the exact maximally flat solution, using the
homogeneous transformer tables as a guide. This at-
tempt turned out to be very successful.

The central idea was to find from the homogeneous

transformer tables how much a homogeneous maximally
flat transformer had to be modified to give the required
bandwidth. This was treated as an additive “correction”
to the log ratios, «, or as a multiplicative correction to
the impedances, Z. Returning to the inhomogeneous
transformer, each guide width ¢ was kept constant, and
the “correction” to each Z was absorbed in the height b
of the guide.

Example 3

Modifying the transformer with the flattest response
curve in Fig. 3, Example 1, for a 30 per cent bandwidth
(in reciprocal guide wavelength) yields, with ¢; and a,
kept the same,

ao = 8.000 inches, by = 2.000 inches,

8.000 inches, b; = 3.512 inches,
as = 5.341 inches, by = 3.167 inches,

a; = 5.000 inches, b; = 3.000 inches.

a, =

I

The VSWR against wavelength response is shown in
Fig. 5. The parent maximally flat case (Jowest curve in
Fig. 3) is reproduced for comparison (broken line).

In this case R=4.761 and from the tables,® a 30 per
cent bandwidth transformer yields a maximum VSWR
of 1.05. This agrees with the computed value for this
inhomogeneous transformer (1.051 in Fig. 5). It is harder
to predict the frequency bandwidth, because the guides
are not uniformly dispersive. Now (dA\,/Ng)/(@N/N)
={(\,/N)2 For the 8-inch guide, this quantity is 1.48,
and for the 5-inch guide 5.88, both at A\y=9.1 inches.
The arithmetic mean is 3.68. We might therefore expect

¢ H. J. Riblet, “General synthesis of quarter-wave impedance
transformers,” IRE TRrRaNs. oN MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-5, pp. 36-43; January, 1957.

78. B. Cohn, “Optimum design of stepped transmission-line
transformers,” IRE TraNs. oN MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-3, pp. 16-21; April, 1955.

8 Leo Young, “Tables for cascaded homogeneous quarter-wave
transformers,” IRE Trans. oN MicrowavE THEORY anD TEecH-
NIQUES, vol. MTT-7, pp. 233-237, April, 1959; and vol. MTT-8,
pp. 243-244, March, 1960.
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Fig. 3—VSWR vs wavelength of several two-section maximally flat
transformers, all from 8X2 inches to 5X3 inches (Example 1).
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Fig. 4—VSWR vs wavelength of two-section maximally flat trans-
former 0.9X0.4 inch to 0.75X0.4 inch (Example 2).
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Fig. 5—VSWR vs wavelength of broad-banded and
maximally flat transformers (Example 3).
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a bandwidth in the order of 30/3.68=8 per cent. The
computed bandwidth for maximum VSWR =1.051 (Fig.
5) is in very close agreement, being 7.8 per cent.

Example 4

This is Example 2 modified as described above for a
62 per cent bandwidth (in reciprocal guide wavelength).
The a’s were again kept the same and the new dimen-
sions are:

ao = 0.900 inch, bo = 0.400 inch,
a1 = 0.850 inch, by = 0.437 inch,
as = 0.771 inch, by = 0.409 inch,
as = 0.750 inch, b3 = 0.400 inch.

The VSWR against wavelength response is shown in
Fig. 6, with the original maximally flat case (Fig. 4) re-
produced for comparison (broken line).

In this case R=2.027, and for a bandwidth of 62 per
cent, the tables give a maximum VSWR of 1.09 for the
homogeneous transformer. OQur inhomogeneous trans-
former (Fig. 6) is in close agreement with its maximum
VSWR of 1.084. The arithmetic mean value of
(@Ng/ o)/ (@N/N) =(N,/N)? is now (2.47-+7.04)/2=4.75,
and therefore we might expect a (frequency) bandwidth
in the order of 62/4.75=13 per cent. The computed
bandwidth for maximum VSWR=1.084 is given by
Fig. 6 as 12 per cent, which again is in excellent agree-
ment.

DiscussioN

Inhomogeneous transformers are commonly required
when a nonstandard waveguide has to be connected to
a component in standard waveguide, or in similar ap-
plications calling for small steps. Then a first-order
theory is usually adequate. An example of an inhomo-
geneous transformer of large R and wide band occurred
in connection with the design of a diplexing filter,? using
waveguide sections which were cut off in the lower fre-
quency band and transmitted, but were nearly cut off
in the upper band. A transformer had to be built from
an 8-inch X 2-inch waveguide to a waveguide of 5 inches
X3 inches, which was approaching cutoff for the upper
band of 1250 to 1350 Mc. At that time, no theory was
available for inhomogeneous transformers, and a com-
bination FE-plane (homogeneous) transformer and a
double linear taper were used. A view of the filter is re-
produced in Fig. 7. This filter involves no less than ten
transformers, five homogeneous and five inhomogene-
ous. The inhomogeneous ones were all double linear
tapers, but could now be designed systematically as
quarter-wave transformers, thereby reducing their
length and improving their performance. The measured

9 L. Young and J. Q. Owen, “A high power diplexing filter,” IRE
Trans. oN MicROWAVE THEORY AND TECHNIQUEs, vol. MTT-7,
pp. 384-387; July, 1959,
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Fig. 6—VSWR vs wavelength of broad-banded and
maximally flat transformers (Example 4).
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Fig. 7—Waveguide diplexing filtet.

performance®? of a maximum VSWR of 1.22 in a
length of over two feet could be greatly improved with
only a two-section ideal transformer (Example 1). As
already mentioned, the ideal transformer assumption
would not be expected to hold for the large steps in-
volved, but a cascade of two transformers, each of two
sections and themselves separated by a quarter-wave
section (making a total of five sections), should also give
substantially improved performance and would still be
shorter than the original design. With the smaller steps
involved, it would be possible to make first-order cor-
rections for the transformers not being ideal.
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