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Inhomogeneous Quarter-Wave Transformers

of Two Sections*

LEO YOUNGt, SENIOR MEMBER, IRE

Summary—An inhomogeneous transformer is defined as one in

which the guide wavelength is a function of position; for a homogene-

ous transformer, the guide wavelength is independent of position.

A previous paperl has dealt with inhomogeneous transformers

of one section; the existence of an optimum design (which is never

homogeneous) was demonstrated. The mathematical tools for in-

homogeneous transformers of two or more sections have been pre-

sented in another paper.z Our purpose here is to apply these results

to the solution of the two-section inhomogeneous transformer.

The maximally flat ideal transformer was solved exactly and the

design equations verified by subsequent numerical analysis. An

approximate procedure to improve the performance over a finite

bandwidth (similar to the Tchebycheff response of homogeneous

transformers) is also explained.

INTRODUCTION

T

HE INEED for inhomogeneous transformers may

arise when it is desired to connect two waveguides

of different dimensions. Consider, for instance,

rectangular waveguide of dimensions a X b (Fig. 1). The

guide wavelength depends only on the width a. If two

waveguides differing only in their b dimensions are to be

connected, then a homogeneous quarter-wave trans-

former is possible (but not necessary and probably not

optimuml). It has been shown on a first-order theory

that where a homogeneous transformer is possible, the

shortest maximally flat transformer is a quarter-wave

transformer.3 Since a single-section homogeneous quar-

ter-wave transformer can always be improved by an in-

homogeneous design, 1 it seems likely that an inhomo-

geneous quarter-wave transformer of more than one sec-

tion will likewise improve the best electrical perfornl-

ance when a maximum transformer length is specified.

This result, however, remains to be confirmed.

If two waveguides differing in the a dimension (Fig.

1), as well as possibly the b dimension, are to be con-

nected, then a homogeneous transformer is not possible

at all, and again it may be suspected that an inhomo-

geneous quarter-wave transformer will yield the best per-

formance when the transformer is to be kept below a
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certain length. Such a discussion then provides the moti-

vation for the following investigation.

MATHEMATICAL SUMM.LRY

In this section, some definitions and formulas will be

summarized which have been proved elsewhere, ~‘2 and

which are needed to derive the design equations of a two-

section quarter-wave transformer. Such a transformer

is shown in Fig. 2. The two sections are gellerdly of

unequal electrical lengths 191and 62, which become equal

only at center frequency, when

91=02=:. (1)

The four characteristic impedances from input to out-

put are denoted by 20, 21, 22, and 23. The log ratios of

the three steps are de finedz by

1 Zi
1~i=—n— (i=l,2,3).

2 zi_,
(2)

The spin matrix exponential,’ which will be needed to

express transformation matrices, are

El(x) = exp (ulti)

-&(x) = exp (uzx)

Es(x) = exp (u,*)
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Fig. l—Waveguide cross section.
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Fig. 2-–Two section transformer parameters.
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where al, U2, and as are the three Pauli spin matrices

0 –1
~2 = J“()10

10()a3= o–1 “
(4)

The transfer matrix, ~,4 of each impedance step is then

the first spin matrix exponential of the log ratio of that

impedance step,

E,(a), (5)

and the transfer matrix of each section of line is given by

the third spin matrix exponential of that line length

times -v’– 1,

E3(j0) . (6)

The over-all transfer matrix of the two-section trans-

former is given in terms of the two line lengths @l, 02,

and the three log ratios al, az and as, by the product

T = El(al)E3(@1)El(a2) E3(@2)El(a3) . (7)

At center frequency

()E,(jtl;) = E3 j ~ = ff3, (8)

and in that case (7) reduces to

by means of (8) of Young. z

Writing

the diagonal part2 of T is then denoted by

‘i(T) ‘(:1:2)
and the antidiagonal part2 of T by

“(T) =(:1:2)

(lo)

(11)

(12)

The condition for a match is

Ag(T) = O. (13)

Therefore, for a match at center frequency, (9) yields

al —a2+a3=o. (14)

4 L. Young, ‘(Analysis of a transmission cavity wavemeter, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-8,
Pf). 436–439; July, 1960.

Denote the free space (or medium) wavelength by 1

and define the differential operator]

(15)

The condition for perfect match, as well as zero slope

of the frequency response curve at center frequency, is

given by (13) combined with

Ag(DT) = O. (16)

From (7) and (8), with (5), (7) and (8) of >-oung,z

DT = UITDCYI – ~lTDaZ + u1TDa3

+ju3E,(–a,)a3E, (aJf73E,(a3)Do,

+ ja3E1(–a1)u8E1( –a,)u3El(a3) D@, (17)

“ DT = ulTD(al – a2 + aJ. .

+ terms in 1, c3, and aa. (18)

To satisfy (16), first note that

Ag(l) = Ag(as) = O. (19)

This leaves the coefficients of al and az in (18) to be

separately equated to zero. [It will be seen from (2) of

Young2 that a, terms are generated in (17). ] The coeff-

icient of al is immediately evident from (18). For it to be

zero, it is required that

D(CYI – a~ + CYJ = O. (20)

[This equation does not follow from (14), since the a’s

are not independent of frequency, as they would be in a

homogeneous transformer. ]

It can be shownl,5 that

Da; = ~(tiz – ti–l~), (21)

where

(22)

~, being the guide wavelength. In general, each section

will have its own value ti,which is a function of fre-

quency.

It can also be shownl that

DO, = – t,20i. (23)

From (2o) and (21),

tlz — tz~ = *(t,’ – t,’). (24)

The output to input impedance ratio is

R=;, (25)

6 L. Young, ‘(Design of Microwave Stepped Transformers with
Applications to Filters, ” D.Eng. dissertation, The Johns Hopkins
Univ., Baltimore, Md.; April, 1959.
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and the a’s are therefore related by

al+a~+a~=ilnR. (26)

Eqs. (14) and (24) are necessary but not sufficient

conditions for a maximally flat transformer. The other

conditions derive from the coefficient of U2 in (18) being

zero. This yields

Ag[El(–al – a,+ C13)DL91+ El(–al + a,+ a:{)llih]

= 0, (27)

after using (2) and (8) of Young. z Therefore, from (23)

and (1), at center frequency

.?12sinh (–al – a~ + a,)

+ tz’ sinh (–a, + a? + a,) = O. (28)

[Jsing (14), this reduces to

sinh 2Q1

()

t2 2
—— —

sinh 2a~ tl ‘
(29)

Eqs. (14), (24) and (29), together with the iden-

tity (26), are the complete solution of the maximally

flat two-section inhomogeneous transformer problem.

When the input and output waveguides are specified,

to, tt, and R are l-mown. It is easy to see that there always

exists a solution for tl, t~,al,03,and cq. NIoreover, this

solution is not unique, since there is only one constrain-

ing equation (24) on the two parameters tland t2.

Each solution will exhibit “maximally flat” behavior

in the sense that the reflection coefficient against fre-

quency curve will have a double zero at center fre-

quency. However, some solutions will be flatter than

others, and if the one-section transformer may be ta.keu

for a guide,l we should sometimes expect one solution to

be the “flattest maximally flat. ” ViTe might expect sig-

nificant differences only as cutoff is approached, or for

large values of R, or both,

Instead of finding the optimum solution, as was done

for the single-section transformer, this extra one degree

of freedom may serve another useful purpose. In

rectangular wave,guide, the smaller the H-plane steps,

the more nearly ideal is the transformer. The parameters

tland f~ may therefore be selected so as to make none

of the individual H-plane steps too large. This will re-

duce first order correctiol~s which might be necessary

for nouideal junctions. 1

Eqs. (14) and (29) may be expressed in terms of the

characteristic impedances ZO, Zl, Zz, and Z~, instead of

the log ratios CM, CMand c+ They become

z, 2(-) =R,
ZI

(30)

647

(31)

an d

ZI 2

()

t12 + t22R112
.

z
(

tlz + t:zR;li

respectively, where R is given by (25),

NCTMERICAL RESCTLTS FOR n~AXIM.U.LY

FLAT TR.4NSFORIWERS

To test the theory, several two-section transformers

designed by these equations were analyzed. In each

case, a maximally flat response, in the sense of a double

zero of the reflection coefficient at center frequency, was

obtained.

Let a, b again denote guide width and height, respec-

tively (Fig. 1). The suffix numbering is as shown in

Fig. 2.

Example 1

Design wavelength,

XO = 9,1 inches,

a“ = 8 inches, ba = 2 inches

as = 5 inches, b~ = 3 inches.

Selecting either a, or a, determines the clesign unicluely.

A plot of VSWR against wavelength of five cases is

shown in Fig. 3. For example, the dimensions of the

transformer with the flattest curve in Fig. 3, are

al = 8.000 inches, bl = 3.462 inches

az = 5.341 inches, bz = 3.210 inches.

There is little change ill performance when a, is reduced

from S inches to about 6 or 6.5 inches (Fig. 3). The

choice of al will then depend more on practical consid-

erations concerning the departure of this H-plane steps

from ideal transformers. The extent to which H-plane

steps in rectangular waveguide depart from ideal trans-

formers has already been discussed elsewhere. 1 IJnfor-

tunately, each of the transformers in Fig. 3 involves at

least one junction which is too far from ideal for a physi-

cal model to be expected to follow the ideal transformer

theory. An alternative approach would be to use two

intermediate transformers of two sections each,, and

spaced a quarter wave apart, which would reduce

steps to where each transformer is essentially ideal.

Example Z

Design wavelength,

A. = 1.390 inches

aO = 0.900 inch, bO = 0.400 inch,

al = 0.850 inch, bl = 0.429 inch,

at = 0.771 inch, bz = 0.417 inch,

as = 0.750 inch, b, = 0.400 inch,

the
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which conform to the design equations. The VSW~

against wavelength response is shown in Fig. 4.

NUMERICAL RESULTS ON BROAD-BANDING

Usually one is concerned with obtaining the best pos-

sible performance over a prescribed frequency band,

rather than maximally flat response. For the homogene-

ous transformer, this problem has been solved analyti-

Cally,6,T and the author has made up nUmerical tables8

for this case.

Since no exact solution has been found for the in-

homogeneous transformer, it seemed worthwhile to try

to modify the exact maximally flat solution, using the

homogeneous transformer tables as a guide. This at-

tempt turned out to be very successful.

The central idea was to find from the homogeneous.

transformer tables how much a homogeneous maximally

flat transformer had to be modified to give the required

bandwidth. This was treated as an additive “correction”

to the log ratios, a, or as a multiplicative correction to

the impedances, Z. Returning to the inhomogeneous

transformer, each guide width a was kept constant, and

the “correction” to each Z was absorbed in the height b

of the guide.

Example 3

Modifying the transformer with the flattest response

curve in Fig. 3, Example 1, for a 30 per cent bandwidth

(in reciprocal guide wavelength) yields, with al and a,

kept the same,

a. = 8.000 inches, b. = 2.000 inches,

al = 8.000 inches, bl = 3.512 inches,

az = 5.341 inches, bz = 3.167 inches,

a3 = 5.000 inches, ba = 3.000 inches.

The VSWR against wavelength response is shown in

Fig. 5. The parent maximally flat case (lowest curve in

Fig. 3) is reproduced for comparison (broken line).

In this case R = 4.761 and from the tables,8 a 30 per

cent bandwidth transformer yields a maximum VSWR

of 1.o5. This agrees with the computed value for this

inhomogeneous transformer (1.051 in Fig. 5). It is harder

to predict the frequency bandwidth, because the guides

are not uniformly dispersive. Now (d&/Ag)/(d~/h)

= (ha/X)2. For the 8-inch guide, this quantity is 1.48,

and for the 5-inch guide 5.88, both at AO = 9.1 inches.

The arithmetic mean is 3.68. We might therefore expect

8 H. J. Riblet, “General synthesis of quarter-wave impedance
transformers, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQ~~, :1.C~hTnT-5, pp. 36–43; January, 1957.

. . “Optimum design of stepped transmission-line
transformers, ” IRE TRANS. ON MICROWAVE TEEORY AND TECH-
NIQUES, vol. MTT-3, pp. 16-21; April, 1955.

a Leo Young, “Tables for cascaded homogeneous quarter-wave
transformers, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-i’, pp. 233–237, April, 1959; and vol. MTT-8,
pp. 243-244, March, 1960.
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Fig. 3—VSWR vs wavelength of several two-section maximally flat
transformers, all from 8X2 inches to 5X3 inches (Example 1).
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Fig. 4—VSWR vs wavelength of two-section ma~imally flat trans-
former 0.9 xO.4 inch to 0.75 xO.4 inch (Example 2).
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Fig. 5—VSWR vs wavelength of broad-banded and
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a bandwidth in the order of 30/3.68 # 8 per cent. The

computed bandwidth for maximum VSWR = 1.051 (Fig.

5) is in very close agreement, being 7.8 per cent.

Example 4

This is Example 2 lmodified as described above for a

62 per cent bandwidth (in reciprocal guide wavelength).

The a’s were again kept the same and the new dimen-

sions are:

ao = 0.900 inch, bo = 0.400 inch,

al = 0.850 inch, bl = 0.437 inch,

a~ = 0.771 inch, bz = 0.409 inch,

as = 0.750 inch, bz = 0.400 inch.

The VSWR against wavelength response is shown in

Fig. 6, with the original maximally flat case (Fig. 4) re-

produced for comparison (broken line).

In this case R = 2.027, and for a bandwidth of 62 per

cent, the tables give a maximum VSWR of 1.09 for the

homogeneous transformer. Our inhornogeneous trans-

former (Fig. 6) is in close agreement with its maximum

VSWR of 1.084. The arithmetic mean value of

(dAQ/Ao)/(dA/A) = (i,/A)’ is now (2.47+7.04)/2 =4.75,

and therefore we might expect a (frequency) bandwidth

in the order of 62,/4.75 = 13 per cent. The computed

bandwidth for maximum VSWR = 1.084 is given by

Fig. 6 as 12 per cent, which again is in excellent agree-

ment.

DISCUSSION

Inhomogeneous transformers are commonly required

when a nonstandard waveguide has to be connected to

a component in standard waveguide, or in similar ap-

plications calling for small steps. Then a first-order

theory is usually adequate. An example of an inhomo-

geneous transformer of large R and wide band occurred

in connection with the design of a diplexing filter, g using

waveguide sections which were cut off in the lower fre-

quency band and transmitted, but were nearly cut off

in the upper band. A transformer had to be built from

an 8-inch X 2-inch waveguide to a waveguide of 5 inches

X 3 inches, which was approaching cutoff for the upper

band of 1250 to 1350 Mc. At that time, no theory was

available for inhomogeneous transformers, and a com-

bination E-plane (homogeneous) transformer and a

double linear taper were used. A view of the filter is re-

produced in Fig. 7. This filter involves no less than ten

transformers, five homogeneous and five inhomogene-

OUS. The inhomogeneous ones were all double linear

tapers, but could now be designed systematically as

quarter-wave transformers, thereby reducing their

length and improving their performance. The measured

g L. Young and J. Q. Owen, “A high power diple~ing filter, ” IRE
TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. .NITT-7,
pp. 384–387; July, 1959.
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Fig. 6—VSWR vs wavelength of broad-banded and
maximally flat transformers (Example 4).

Fig. 7—Waveguide diplexing filter,

performance of a maximum VSWR of 1.22 in a

length of over two feet could be greatly improved with

only a two-section ideal transformer (Example 1). As

already mentioned, the ideal transformer assumption

would not be expected to hold for the large steps in-

volved, but a cascade of two transformers, each of two

sections and themselves separated by a quarter-wave

section (making a total of five sections), should also give

substantially improved performance and would still be

shorter than the original design. With the smaller steps

involved, it would be possible to make first-order cor-

rections for the transformers not being ideal.
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